
Anatoli Tumin
University of Arizona, Tucson, Arizona

David E. Ashpis
Glenn Research Center, Cleveland, Ohio

Optimal Disturbances in Boundary Layers
Subject to Streamwise Pressure Gradient

NASA/TM—2003-212288

May 2003

AIAA–2003–4242



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



Anatoli Tumin
University of Arizona, Tucson, Arizona

David E. Ashpis
Glenn Research Center, Cleveland, Ohio

Optimal Disturbances in Boundary Layers
Subject to Streamwise Pressure Gradient

NASA/TM—2003-212288

May 2003

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
16th Computational Fluid Dynamics Conference
and the 33rd Fluid Dynamics Conference and Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
Orlando, Florida, June 23–26, 2003

AIAA–2003–4242



Acknowledgments

The first author was partially supported by an AFOSR grant monitored by Dr. J. Schmisseur and partially
by NASA Glenn Research Center under Cooperative Agreement NCC3–991. The authors
appreciate useful comments provided by Dr. Stuart Leib of the Ohio Aerospace Institute.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National

Aeronautics and Space Administration.

Available electronically at http://gltrs.grc.nasa.gov

http://gltrs.grc.nasa.gov


NASA/TM�2003-212288 1 
American Institute of Aeronautics and Astronautics 

OPTIMAL DISTURBANCES IN BOUNDARY LAYERS SUBJECT TO 
STREAMWISE PRESSURE GRADIENT 

 
Anatoli Tumin* 

The University of Arizona 
Tucson, Arizona 85721 

 
David E. Ashpis� 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
 

                                                           
*Assistant Professor, Department of Aerospace and Mechanical Engineering. Senior Member AIAA,  tumin@engr.arizona.edu. 
�Aerospace Engineer. Senior Member AIAA, ashpis@nasa.gov 
 

Abstract 
   An analysis of the non-modal growth of 
perturbations in a boundary layer in the presence of a 
streamwise pressure gradient is presented. The 
analysis is based on PSE equations for an 
incompressible fluid. Examples with Falkner-Skan 
profiles indicate that a favorable pressure gradient 
decreases the non-modal growth while an 
unfavorable pressure gradient leads to an increase of 
the amplification. It is suggested that the transient 
growth mechanism be utilized to choose optimal 
parameters of tripping elements on a low-pressure 
turbine (LPT) airfoil. As an example, a boundary-
layer flow with a streamwise pressure gradient 
corresponding to the pressure distribution over a LPT 
airfoil is considered. It is shown that there is an 
optimal spacing of the tripping elements and that the 
transient growth effect depends on the starting point. 
The amplification is found to be small at the LPT�s 
very low Reynolds numbers, but there is a possibility 
to enhance the transient energy growth by means of 
wall cooling. 
 

Nomenclature 
E = energy norm 
G = /out inE E  energy ratio 
H = shape factor 

LH  = / eLL Uν  

LsH  = /s exitL Uν  

refH  = scale in y- and z- directions 
L = length along the streamwise 
   direction 

refL  = reference length 

sL  = surface length 
Re  = Reynolds number 
ReL  = /eLU L ν  

/w adT T  = temperature factor (ratio of the wall  
  temperature to the temperature of 
  the adiabatic wall) 
U = streamwise velocity component of  
  the mean-flow velocity 

eLU  = free-stream velocity at x L=  

refU  = reference velocity 
V = normal-to-the wall velocity  
  component of the mean-flow 
  velocity 
u  = streamwise velocity disturbance 
v  = normal velocity disturbance 
w = spanwise velocity disturbance 
x  = streamwise coordinate 
y  = coordinate normal to the wall 
z = spanwise coordinate 
β  = spanwise wave number 

Hβ  = Hartree parameter 

ε  = / ref refU Lν∞  

ν  = kinematic viscosity 
θ  = momentum thickness 
p   = pressure disturbance 

Superscripts 
 
T = transposed 
Subscripts 
 
e = free stream 
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exit = exit conditions 
in = starting point 
out = ending point 
 

Introduction 
 Laminar-turbulent transition in shear flows is 
still an enigma in the area of fluid mechanics. The 
conventional explanation of the phenomenon is based 
on the instability of the shear flow with respect to 
infinitesimal disturbances. The conventional 
hydrodynamic stability theory deals with the analysis 
of normal modes that might be unstable. The latter 
circumstance is accompanied by an exponential 
growth of the disturbances that might lead to laminar-
turbulent transition. Nevertheless, in many cases, the 
transition scenario bypasses the stage of the 
exponential growth associated with the normal 
modes. This type of transition is called bypass 
transition.  Observations of laminar-turbulent 
transition in plane Couette flow, in circular pipe flow, 
in boundary layers at relatively low Reynolds 
numbers, etc., can serve as examples of bypass 
transition. An understanding of the phenomenon has 
eluded us to this day. One possibility is that bypass 
transition is associated with so-called algebraic 
growth of disturbances in shear flows1�3. 
 The phenomenon of algebraic growth of 
disturbances in shear flows has been of great interest 
during the last two decades as it may be associated 
with the bypass transition mechanism. Ellingsen and 
Palm1 considered, in the inviscid case, an initial 
disturbance independent of the streamwise coordinate 
and found that the streamwise disturbance amplitude 
may grow in time, even though the basic flow does 
not posses an inflection point. Landahl2 showed that 
all parallel inviscid shear flows are unstable to a wide 
class of three-dimensional disturbances. The result is 
independent of whether or not the shear flow is 
unstable to an exponential growth of wavelike 
disturbances. This type of instability that is not 
related to exponential growth is also referred to as 
�non-modal growth.� Mathematically, the effect of 
non-modal growth is associated with non-normality 
of the linearized Navier-Stokes operator and non-
orthogonality of the eigenfunctions. In simple words, 
the essence of non-modal growth is the possibility of 
combining the exponentially decaying modes in such 
way that their sum will possess transient growth. One 
can find a vast bibliography on the topic in the Otto 
Laporte Award Lecture by Reshotko3 and in a 
monograph by Schmid and Henningson.4  
 Numerical analysis of spatial non-modal growth 
within the scope of the linearized boundary-layer 

equations for an incompressible flow over a flat plate 
was carried out in Refs. 5 and 6. Spatial analysis  
within the scope of the linearized Navier-Stokes 
equations (quasi-parallel approximation of 
compressible and incompressible flows) was 
presented in Refs. 7 to 9. The main results of these 
theoretical models are as follows: 

• A system of counter-rotating streamwise 
vortices, which are periodic in the 
spanwise direction, provides the strongest 
growth of the disturbance.  

• There is an optimal spacing of the 
streamwise vortices, leading to the 
strongest effect. 

 The effect of pressure gradients on the transient 
growth mechanism was considered within the scope 
of temporal theory by Corbett and Bottaro10 and 
within the scope of spatial theory by Tumin and 
Reshotko.9 These results were based on the quasi-
parallel flow assumption. Tumin11 analyzed the 
pressure gradient effect for the Falkner-Skan profile 
within the scope of an analytical model when the 
spanwise wave number is very small. The pressure-
gradient effect within the scope of spatial theory with 
nonparallel base flow and finite spanwise wave 
numbers has not been considered, yet. 
 Another motivation for the present work stems 
from separation flow control on low-pressure 
turbines (LPT). The performance of LPTs is strongly 
affected by the flow separation. There is a possibility 
of delaying the boundary-layer separation by tripping 
the boundary layer with the help of roughness 
elements or other devices.  Usually, trial-and-error 
method is used to determine an appropriate 
placement of the control elements. This approach is 
time consuming and expensive. A recent 
investigation by Reshotko and Tumin12  demonstrated 
that roughness-induced transition might be related to 
the transient growth mechanism. 
 Periodically spaced in the spanwise direction, 
roughness elements generate a system of counter-
rotating streamwise vortices. Due to a secondary 
instability mechanism, the streamwise vortices can 
lead to earlier transition to turbulence. They also 
provide a mixing enhancement due to redistribution 
of the streamwise momentum. Consequently, 
optimization of the streamwise vortices for maximum 
energy growth leads to maximizing of the flow 
control effectiveness. In the present work, analysis of 
the optimal disturbances/streamwise vortices 
associated with the transient growth mechanism will 
be performed for boundary layers in the presence of a 
streamwise pressure gradient. The theory will provide 
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the optimal spacing of the control elements in the 
spanwise direction and their placement in the 
streamwise direction. 
 

Governing Equations 
     Because the flows of interest have relatively low 
Mach numbers, we consider steady three-dimensional 
disturbances in an incompressible two-dimensional 
boundary layer. We choose the streamwise 
coordinate x along the surface. The coordinate y will 
measure distance from the wall. We define a small 

parameter / ref refU Lε ν= , where ν , refU , and 

refL  are viscosity, reference velocity, and reference 

length, respectively. The streamwise coordinate is 
scaled with refL  while the vertical coordinate y  and 

spanwise coordinate z  are scaled with 
/ref refL Uν . The following scaling is assumed for 

the velocity disturbances ,  ,  and u v w , and the 
pressure p : 
 

 2 2

,     ,

,   

ref ref

ref ref

u U v U

w U p U

ε

ε ε ρ

∼ ∼

∼ ∼
           (1) 

 
 This scaling of the linearized Navier-Stokes 
equations and neglecting of the curvature effects lead 
to the governing equations for Görtler instability with 
the Görtler number equal to zero. We look for a 
periodic solution in the spanwise direction with the 
corresponding wave number β . The governing 
equations for the amplitude functions can be written 
in dimensionless form as follows:5,6  
 

0
u v

w
x y

β
∂ ∂

+ + =
∂ ∂

                   (2) 

  ( )
2

2
2

u U u
Uu V v u

x y y y
β

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
      (3) 

 

( ) ( )

2
2

2

2

                       

uV vU Vv
x y

p v
Vw v

y y
β β

∂ ∂
+ + +

∂ ∂

∂ ∂
+ = −
∂ ∂

       (4) 

 ( ) ( )
2

2
2

w
Uw Vw p w

x y y
β β

∂ ∂ ∂
+ − = −

∂ ∂ ∂
   (5) 

 

where ( ) ( ),  and ,U x y V x y  are the streamwise and 
normal velocity components of the base flow, 
respectively (in addition, the latter is divided by ε ). 
The following boundary conditions are applied to the 
solutions: 
 

0 :        0y u v w= = = =          (6a) 
 

:      , , 0y u w p→ ∞ →              (6b) 
 
The equations (2) to (5) can be solved subject to 
boundary conditions (6a) and (6b) with prescribed 
initial velocity perturbations at x = x0.  
 The governing equations can be recast as 
follows: 
 

  ( ) 0 1 2y yyx = + +Af B f B f B f               (7) 
 
where 0 1 2,  ,  , and A B B B  are 4 4×  matrices (one 
can find them in the Appendix; see also Ref. 5) and 

( ), , , Tu v w p=f . The superscript �T� stands for 
�transposed,� and the subscripts �x� and  �y� denote 
differentiation with respect to  x and y,  respectively. 
 

Optimization of Energy Growth 
     The authors of Refs. 5 and 6 employed an iterative 
procedure to find the optimal disturbances in terms of 
the maximum of the energy growth ratio 

/out inG E E= , where  and in outE E  stand for the 
input and output energy norms. Andersson et al.5 
used the same definitions of inE  and outE  as for the 
disturbance energy  
 

 ( )max 2 2 2 2 2

0

y
E u v w dyε ε= + +∫           (8) 

 
whereas Luchini6 employed the knowledge that the 
optimal disturbances are represented by streamwise 
vortices with corresponding output as the streamwise 
velocity streaks, 
 

 ( )max2 2 2

0

y

inE v w dyε= +∫               (9a) 

 
max 2

0

y

outE u dy= ∫                      (9b) 
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( )

max

max

2

2 0

2 2

0

y

out
y

in

u dy
E

G
E

v w dy

ε −
∫

= =

+∫

    (9c) 

 
 As was shown in Ref. 5, the two definitions of 
the optimal disturbances lead to the same results at 
Reynolds numbers of 104 and higher. Because the 
iteration procedure based on the optimization of ratio 
(9c) provides significant simplification, we adopt it 
for the following analysis. Because Eqs. (2) to (5) are 

independent of ε , the value of 2Gε  is invariant with 
respect to the Reynolds number. 

 
Numerical results 

Falkner-Skan Base Flow 
 We consider a Falkner-Skan family of boundary-
layer profiles with free-stream velocity distribution 

m
eU Cx=  and corresponding Hartree parameter 

( )2 / 1H m mβ = + . For convenience, we have used 

the velocity scale m
ref eLU U CL= =  and the length 

scale ( )/ 1refL L m= + . The latter allowed the use of 
the conventional scaling of boundary-layer solutions 

with ( )/ 1 /ref eL ref refH L m U L Uν ν= + = . 

 Figure 1 shows the scaled energy ratio versus 
spanwise wave number β  for three Hartree 

parameters, Hβ  = �0.1, 0.0, and 0.1. The starting and 

the ending points, /inx L  and /outx L , are equal to  
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.001

0.002

0.003

0.004

0.005

0.006

G
/R

e L

βHref

 βH=0.0
 +0.1
 -0.1

 
Figure 1. Effects of the spanwise wave number β  

and the Hartree parameter Hβ  on transient growth 

(starting point / 0.2inx L = ). 

0.2 and 1.0, respectively. The Reynolds number ReL  

in Fig. 1 and what follows is defined as /eLU L ν . 
One can see that an unfavorable pressure gradient 
( )0Hβ <  leads to an increase in the energy growth 

while a favorable pressure gradient ( )0Hβ >  leads 
to suppression of the transient growth mechanism. 
The latter is consistent with results obtained within 
the scope of parallel flow approximation.5  
 Figures 2 and 3 show similar results, but the 
starting points are /inx L  = 0.4 and 0.6, respectively. 
A comparison of Figs. 1 to 3 indicates that there is a 
spanwise wave number, 0.5 0.6refHβ = − , and a 

starting point, /inx L , that maximize the energy 
growth. These parameters correspond to optimal 
spanwise spacing and streamwise placing of 
perturbators for maximum flow control effectiveness.  
Figure 4 demonstrates the energy ratio versus the 
downstream coordinate /x L  at 0.5refHβ =  and 

/inx L  = 0.2. 
 
Example of LPT Conditions 
 Volino13 simulated low-pressure turbine (LPT)  
airfoil conditions in a low-speed wind tunnel. The 
test section was designed as a passage between two 
airfoils. The local free-stream velocity at the 
favorable pressure-gradient region was closely 
approximated by the following equation: 
 

 
0.214

1.48e

exit

U x
U Ls

=
 
 
 

 (10) 

 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.001

0.002
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0.004

0.005

0.006

 βH=0.0
 +0.1
 -0.1

G
/R

e L

βH
ref

 
Figure 2. The same as Fig. 1, with starting point 

/ 0.4.inx L =  
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Figure 3. The same as Fig. 1, with starting point 
xin/L = 0.6. 
 

0 1 2 3 4
0.000
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0.003

0.004
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0.006

0.007

G
/R

e L

X/L

 βH=0.0
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Figure 4. Optimal energy ratio versus the 
downstream coordinate at three Hartree parameters 
(xin/L = 0.2, βHL = 0.5). 
 
where sL  is the suction surface length and exitU  is 
the nominal exit free-stream velocity based on the 
inviscid solution. The distribution (10) corresponds to 
the Falkner-Skan flow with the Hartree parameter 
βH = 0.353. 
 Figure 5 demonstrates the energy ratio scaled 
with the Reynolds number Reexit = /exit sU L ν  versus 
the spanwise wave number scaled with 

/Ls s exitH L Uν= . The ending point was 

prescribed at xout/Ls = 0.444  while the starting points 
varied from 0.111 to 0.289. The streamwise velocity 
perturbation at xout/LS = 0.444, xin/LS = 0.111, and 
βHLs = 0.925 is shown in Fig. 6, and the  
corresponding optimal profiles of v  and w  are 
presented in Fig. 7. 
 The results indicate that we are dealing with a 
very strong favorable pressure gradient that 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.0010

G
/R

e

βHLs

 X/Ls=0.111
 0.155
 0.200
 0.244
 0.289

 
Figure 5. Effects of the spanwise wave number β and 
the starting point xin/L on transient growth at 
conditions of the experiment in Ref. 13 (βH = 0.353, 
xout/Ls = 0.444). 
 
 

0 5 10
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y/Hout

u/
U

e,
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Figure 6 The streamwise velocity perturbation at the 
ending point xout/Ls = 0.444. The parameters 
correspond to the experimental conditions in Ref. 13 
(xin/Ls = 0.111, βHLs = 0.925). 
 
 
suppresses the transient growth mechanism. For an 
example of a typical LPT cruise Reynolds number of 
50,000, the transient growth will provide an energy 
amplification of less than 50. This is a relatively 
small number. If we take into account that in practice 
the perturber will not produce the optimal inflow 
field, the real amplification will be even of a smaller 
value. For example, in Blasius boundary layer, the 
theory predicts amplification of 250 at the same 
Reynolds number of 50,000 (Ref. 9). Correlation 
between the transient growth factor and transition has 
not been established yet; therefore the effectiveness 
of the transient growth mechanism in preventing flow 
separation cannot be assessed quantitatively 
currently. 
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Figure 7. The optimal velocity perturbations at 
xin/Ls = 0.111 and βHLs = 0.925 corresponding to the 
streamwise velocity perturbation at xout/Ls = 0.444  
shown in Fig. 6. 
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Figure 8. Effect of the temperature factor on energy 
growth at the experimental conditions of Ref. 13. 
 
 
 There is a possibility of enhancing the transient 
growth mechanism by means of wall cooling. The 
effect of wall cooling was investigated by Tumin and 
Reshotko9 within the scope of a parallel flow 
approximation. In order to estimate possible increases 
of the energy ratio on a cold wall at a high favorable 
pressure gradient, we utilize the method of Ref. 9 for 
a compressible flow with local Mach number 0.5 and 
Hartree parameter 0.353. The results are shown in 
Fig. 8. One can see that cooling of the wall might 
provide a tenfold increase in the energy ratio. 

 
Summary 

 The results for the transient growth phenomenon 
within the scope of the linearized boundary-layer 
equations in the presence of a streamwise pressure 
gradient are consistent with previous results obtained 

within the scope of the parallel flow approximation 
and linearized Navier-Stokes equations.9 A favorable 
pressure gradient decreases the non-modal growth 
while an unfavorable pressure gradient leads to an 
increase of the amplification. 
 The example of a Falkner-Skan flow with a 
Hartree parameter Hβ  = 0.353 corresponds to 
experimental data13 and simulates the flow over a 
low-pressure turbine airfoil upstream of the 
separation point. At this pressure gradient, the 
transient growth mechanism is suppressed, and the 
energy amplification at low Reynolds number has a 
small value.  The theory of the transient growth 
mechanism predicts that it is possible to enhance the 
energy growth by means of wall cooling. The 
example within the scope of the parallel flow theory9 
demonstrates that cooling of the wall might provide a 
tenfold increase in the energy ratio. Future 
experiments on boundary layer tripping accompanied 
by wall cooling will contribute to our understanding 
of the bypass transition mechanism. 
 The method predicts that there is an optimal 
spacing between perturbers and their optimal location 
from the leading edge. The latter results can be 
utilized in future experiments with tripping of the 
boundary layer over the LPT airfoil. These type of 
experiment are planned to be carried out in facilities 
at NASA Glenn Research Center,14 at the US Naval 
Academy,13 and at the University of Notre Dame.15  
 Consideration of the optimal velocity 
perturbations in Fig. 7 indicates that they are 
distributed across the boundary layer. This means 
that an array of generators localized on the wall will 
not provide excitation of the optimal disturbances. 
Therefore, the question of realizability of the optimal 
disturbances arises. For example, one can solve the 
receptivity problem for an array of generators on the 
wall and find generator shapes (or other parameters), 
that provide velocity disturbance profiles closest to 
the optimal ones.  Another option is to solve the 
receptivity problem for distributed generators 
upstream of the starting point, xin, and to find a 
generators distribution, that leads to the optimal 
disturbances. The next option is to design a 
disturbance generator that directly affects the flow 
inside the boundary layer instead of perturbing the 
near-wall region only. For example, it might be a 
focused laser beam projected from the wall, to where 
it could be delivered by a fiber-optic system.16 These  
fundamental issues should be addressed in future 
research programs on the application of bypass 
transition mechanisms to separation flow control at 
low Reynolds numbers. 
 



 

7 
American Institute of Aeronautics and Astronautics 

Appendix 
      For purpose of consistency of the formulation, we 
repeat the main features of the numerical scheme 
described in Ref. 5. Matrices 0 1 2,  ,  , and A B B B  in 
Eq. (7) are as follows: 
 

2

0 2

2

0 0 0

0 0

0 2 0

0 0

y

y

y

U

V V

V

β

β

β β

β β

−

− −
=

− − −

− −

 
 
 
 
 
 
 

B  

 

1 2

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0

;
0 2 0 1 0 1 0 0
0 0 0 0 0 1 0

V
V

V

−
−

= =
− −

−

   
   
   
      
   

B B  

 
1 0 0 0

0 0 0
0 0

0 0 0

U
V U

U

=

 
 
 
  
 

A  

 
The scheme utilized for Eq. (7) in the streamwise 
direction is 
 

( ) ( )

( ) ( ) ( )

1 0

1 11
0 1 2y yyx f f f

− =

∆ + + 
  

Af Af

B B B
 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 11
0 1 2

3 1
2

2 2

,   1

n n n

n nn
y yyx f f f n

+ −

+ ++

− + =

∆ + + ≥ 
  

Af Af Af

B B B
 

 
where n stands for the step number along the 
coordinate x. At each streamwise position, the one-
dimensional boundary-value problem is solved using 
a spectral collocation method based on Chebyshev 
polynomials. Usually, we used 100 intervals along 
the coordinate x and 100 Chebyshev polynomials for 
the solution approximation. 
 To find the optimal perturbations corresponding 
to the maximum of the energy ratio in (9c), the 
forward solution of Eq. (7) is accompanied by the 
backward solution of the adjoint problem.5,6 In the 
present work, the adjoint system was discretized, i.e., 
the discretized adjoint equations were employed. 
Another approach is to utilize the adjoint form of the 
discretized forward equations (see discussion in 
Ref. 5). An arrangement of the iterations is described 
elsewhere.5,6 Usually, 2 to 3 iterations were enough to 
achieve convergence at the 0.1 percent level. 
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